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Abstract

In this document we give an overview of adversarial search techniques and in-

troduce the game of draughts and its role in AI research in section 1.

We detail the requirements and implementation of a general framework capable

of hosting game-playing agents in section 2 and the implementation of a minimally

simpli�ed draughtsboard in subsection 2.1.

We quickly review the theoretical foundations and discuss the implementation

of an Alpha-Beta agent equipped with quiescence search and the killer heuristic in

subsection 3.1 and of a UCT-based agent in subsubsection 3.2.1.

Finally, in section 4 we draw conclusions and propose future extensions.

Contents

1 Introduction 3

2 A micro-framework for two-player games 4

2.1 Implementation of the game of Draughts . . . . . . . . . . . . . . . . . . 6

3 Agents 7

3.1 Minimax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.1 Quiescence Search Minimax . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Killer Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Monte Carlo Tree Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.1 Bandit problems and UCT . . . . . . . . . . . . . . . . . . . . . . 12

4 Conclusion and future work 15

A Long listings 18

A.1 UCT Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
A.2 BasicAlphaBeta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
A.3 SimpleKillerAlphaBeta . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

List of Tables

1



List of Figures

1 Draughtsboard with PDN numbering . . . . . . . . . . . . . . . . . . . . 3
2 A nonquiescent position . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Five iterations of MTCS . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

List of Listings

1 Game.scala . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Player.scala . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 AbstractAlphaBeta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 NaiveDraughtsEvaluation . . . . . . . . . . . . . . . . . . . . . . . . . 9
5 QuiescenceAlphaBeta . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2



1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

Figure 1: Draughtsboard with PDN numbering. Red starts on 1 ÷ 12, White starts on
21÷ 32; 1÷ 4 and 29÷ 32 are called �King's Row�; for a man to reach King's Row on the
opposite side of the board results in a promotion to king.

1 Introduction

Draughts is a well-known family of two-player games, the most played of which is English
draughts (or American checkers).

The rules issued by the World Checkers Draughts Federation [Fed12], which claims for
itself the title of �o�cial world governing body for the game of Checkers�, de�ne draughts
as �a board game of skill played between two players who, following a �xed set of rules,
attempt to win the game by either removing all of their opponent's playing pieces from
the draughts board, or by rendering their opponent's pieces immobile.�

The draughtsboard for English draughts with its 32 squares is reproduced in Figure 1,
with squares numbered according to PDN (Portable Draughts Notation); from here on,
with �draughts� we will be referring to the game of English draughts as de�ned by the
WCDF rules, which will be assumed to be known. PDN numbering will also be liberally
used in code fragments.

With a branching factor estimated as 2.5 by Lu [Lu93] and 6.4 by Guerra [Gue11]
draughts is a somewhat less complex game than the �drosophila of arti�cial intelligence�,
chess, with its branching factor estimated to be around 40; this hasn't prevented several
high-pro�le attempts at devising draughts-playing engines that include early e�orts by
Samuel [Sam67] and, most famously, Chinook, written by the team of Jonathan Schae�er,
which proved a worthy opponent for world champion Marion Tinsley in 1996. [Sch+07]

Draughts is a weakly solved game, in other words perfect play by both sides leads
to a draw [Sch+07]; moreover, in the classical framework of game theory Draughts is a
two-player, deterministic, perfect-information game: for this class of games variations on
the minimax algorithm have been standard since Shannon's seminal 1950 work [Sha50]
but are currently being challenged by Monte Carlo methods, particularly since Sylvain
Gelly et al's successful implementation [GW06] of Kocsis and Szepesvari's UCT algorithm
[KS06] in the Go engine MoGo.
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2 A micro-framework for two-player games

Despite the popularity of computer draughts, when we set out to extend an existing
program with MTCS or advanced evaluation functions and set up a framework to carry
out benchmarks we were faced with a lack of appropriate programs in source code form
in the public domain or under a su�ciently permissive license.

More precisely, nearly all programs we found found fell into one of the following
categories:

� �Industrial-strength� programs, generally hard to extend and modify, and either

� architecturally complex

� highly optimized at the expense of simplicity

� low-level (e.g. written in C with extensive manual menory handling)

� Programs too tightly coupled with a speci�c agent or class of agent (typically Min-
imax)

� Programs too tightly coupled with their UI and/or with the human vs IA mode of
play, hard to extend in order to allow for IA vs. IA play and statistics collection.

Requirements We eventually resolved to write our own, with the aim that it be

� Architecturally simple

� Strongly decoupled, in particular regarding agents and games, and versatile

� Written in a high-level language

Choice of programming language Scala [Ode] was chosen as a programming
language; amongs its bene�ts are its high portability thanks to the JVM (and, indeed,
its ability to go beyond what the JVM a�ords � for example the ability of its dialect
Scala.js to run in a browser [Doe13]), a reasonable type system that can make debugging
and writing correct programs easier and its ability to mix stateless, expressive functional
programming with imperative programming with side e�ects, which is ideal for writing
high-level functional code while retaining the ability enter algorithms found in literature
in ALGOL-like languages verbatim.

Architecture The code is available at [Twist].
The architecture is almost entirely speci�ed by �les Game.scala and Player.scala,

shown in Listing 1 and Listing 2.
In Game.scala positions are partitioned into TerminalPositions and their comple-

ment, LivePositions1.

1LivePosition has nothing to do with the notion of �dead position�, related to that of quiescence,
introduced by Turing in 1950.
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0 trait Game[G <: Game[G]] {
1 def startingPosition(): LivePosition[G]
2 }
3

4 trait Move[G <: Game[G]] {}
5

6 sealed abstract class Side {
7 def opposite(): Side
8 }
9

10 case object Min extends Side {
11 def opposite() = Max

12 }
13

14 case object Max extends Side {
15 def opposite() = Min

16 }
17

18 trait TerminalPosition[G <: Game[G]] {
19

20 /**
21 * @return 0 if draw, −1 if Min wins, +1 if Max wins
22 */
23 def utility: Integer
24 }
25

26 /**
27 * A position that is not terminal
28 */
29 trait LivePosition[G <: Game[G]] {
30

31 /**
32 * @return the side to move, /if/ there are available moves
33 */
34 def sideToMove: Side
35

36 /**
37 * @return a non−empty Move −> Position map
38 *

39 * Unless the search space is trivial it's advisable to lazily evaluate positions
40 */
41 def successor(): Map[Move[G], Either[LivePosition[G], TerminalPosition[G]]]
42 }

Listing 1: Game.scala
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0 trait DebugStats[+A <: AI[_]] {
1 def getNodes: Int
2 def toString: String
3 }
4

5 case class MoveWithStats[G <: Game[G], +M <: Move[G], +S <: DebugStats[AI[G]]](
6 val move: M,
7 val stats: S
8 )
9

10 sealed trait Player[G <: Game[G]] {
11 def apply(p: LivePosition[G]): Move[G]
12 }
13 trait Human[G <: Game[G]] extends Player[G]
14 trait AI[G <: Game[G]] extends Player[G] {
15 def debug(p: LivePosition[G]): MoveWithStats[G, Move[G], DebugStats[AI[G]]]
16 def apply(p: LivePosition[G]): Move[G] = debug(p).move
17 }

Listing 2: Player.scala; in order to implement an agent it is su�cient to extend AI

with an appropriate implementation of debug, which returns a move and a DebugStats

object containing statistics about the search that yielded said move (e.g. how many nodes
expanded, how many cuts...)

The method successor2 acts as the authoritative generator of legal moves and returns
a map of moves to successor states; lazy evaluation, a�orded by Scala, is necessary to
make this simple interface viable for games with non-trivial state space.

2.1 Implementation of the game of Draughts

An implementation of the game of Draughts is to be found in Draughts.scala, accom-
pained by a test suite living under test/.

The implementation of the game will not be discussed at length nor reproduced here,
but for the details of practical relevance that follow.

Firstly, our board implements faithfully the WCDF rules with the exception of the
de�nition of a draw given in �1.32.

For simplicity a draw is reached after a �xed number of plys have been played

without a winner. The default number of plys is set to 100; Guerra gives the average
game length as 60 ply [Gue11].

Moreover, we work under the implicit assumption that utility is in the range [−1, 1],
where 1 and -1 are the utility of a win for either side, as suggested in [Sha50].

2Modeled after the de�nitions presented in the second edition of [AIMA], rather than those in the
third ed. that include an explicit result function

6



3 Agents

3.1 Minimax

The Minimax algorithm, �rst introduced by Shannon in [Sha50] and illustrated at length
in [AIMA], performs a complete depth-�rst exploration of the game tree in order to derive
a minimax value for each child node and play the optimal move.

Its naive implementation has time complexity O(bm) and space complexity O(bm)
[AIMA] and is thus impractical; its most popular re�nement is α/β pruning, likely inde-
pendently invented in the 1950s by various authors.

Alpha-Beta pruning, also illustrated in great detail in [AIMA], propagates heuristic
bounds on the value of a position while traversing the game tree, corresponding to the
minimum (resp. maximum) value that the agent about to move (resp. agent's opponent)
can achieve.

Subtrees that are outside this range are cut o�, resulting, in the best case, in a O(bm/2)
complexity.

In our family of Minimax implementations we will use the equivalent Negamax for-
mulation, described in [KM75], for ease of implementation, in which the minimax value
F of a position p is de�ned as

F (p) =

{
f(p) d = 0

max(−F (p1), . . . ,−F (pd)) d > 0

Implementation The skeleton of our Alpha-Beta implementation, found in the class
AbstractAlphaBeta inside Minimax.scala, is shown in Listing 3.

The most basic concretization of AbstractAlphaBeta � the classical Alpha-Beta al-
gorithm � is implemented in class BasicAlphaBeta, reproduced in appendix A.2.

Notice how AbstractAlphaBeta[G] expects that an Evaluation object, appropriate
for the game G we want to apply our agent to, be passed as parameter.

A basic evaluation function is provided for the game of draughts in Draughts.scala

and shown in �gure Listing 4, along with further evaluation functions to be discussed in
??.

A cuto� is implemented by throwing an exception Cut, which will forcibly abandon
the evaluation of current subtree.

Move ordering It is a well known fact that the e�ciency of Alpha-Beta in terms of
expanded nodes over naive Minimax is fully realized only through an appropriate ordering
of moves.

We have provided a simple ordering function in BasicDraughtsMoveOrdering (not
reproduced) that privileges

1. among capture moves, the ones that maximize the amount of captured pieces

2. among ordinary, non-capturing moves, those that reach a farther place on the board
or travel a longer distance.
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0 abstract class AbstractAlphaBeta[G <: Game[G]](e: MinimaxEvaluation[G],
1 o: AlphaBetaOrdering[G],
2 depth: Int,
3 maximize: Boolean = false)
4 extends AI[G] {
5 def onTerminal(t: TerminalPosition[G],
6 plyLeft: Int,
7 nega: Int): (Double, AlphaBetaStats[G])
8

9 def onStatic(l: LivePosition[G],
10 plyLeft: Int,
11 nega: Int): (Double, AlphaBetaStats[G])
12

13 def otherwise(l: LivePosition[G],
14 plyLeft: Int,
15 alpha: Double,
16 beta: Double,
17 nega: Int): (Double, AlphaBetaStats[G])
18

19 case class Cut(val v: Double, val stats: AlphaBetaStats[G]) extends Exception
20

21 def iter(p: Either[LivePosition[G], TerminalPosition[G]],
22 plyLeft: Int,
23 alpha: Double = Double.NegativeInfinity,
24 beta: Double = Double.PositiveInfinity,
25 nega: Int = 1): (Double, AlphaBetaStats[G]) =
26 p match {
27 case Right(t: TerminalPosition[G]) =>
28 onTerminal(t, plyLeft, nega)
29 case Left(l: LivePosition[G]) =>
30 if (plyLeft <= 0)
31 onStatic(l, plyLeft, nega)
32 else
33 otherwise(l, plyLeft, alpha, beta, nega)
34 }
35

36 def debug(
37 p: LivePosition[G]): MoveWithStats[G, Move[G], AlphaBetaStats[G]] = {
38 val evaluatedMoves = p.successor.map(mp => mp._1 −> iter(mp._2, depth))
39 val cumulativeStats = evaluatedMoves

40 .map(_._2._2)
41 .fold(new AlphaBetaStats[G](0, 0, 0, 0))(_ + _)
42 val rankedMoves = evaluatedMoves.toList
43 .map((t: ((Move[G]), (Double, AlphaBetaStats[G]))) => (t._1, t._2._1)) // Discard stats
44 .sortWith(_._2 < _._2)
45 if (maximize)
46 MoveWithStats[G, Move[G], AlphaBetaStats[G]](rankedMoves.last._1,
47 cumulativeStats)
48 else
49 MoveWithStats[G, Move[G], AlphaBetaStats[G]](rankedMoves.head._1,
50 cumulativeStats)
51 }
52 }

Listing 3: AbstractAlphaBeta
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The assumption that motivates the second point is that the ordering is particularly
critical in the early phases of the game, when the search space is larger and deeper3, and
in opening and middle game players typically will try to advance, in order to ultimately
reach King's Row and obtain a promotion.

Subsection 3.1.2 discusses the killer heuristic as an improvement.

0 object NaiveDraughtsEvaluation extends MinimaxEvaluation[Draughts] {
1 def apply(p: LivePosition[Draughts]): Double =
2 p match {
3 case (p: LiveDraughtsPosition) =>
4 (p.board.filter(_ == Some(Man(Max))).size * 1 +
5 p.board.filter(_ == Some(Man(Min))).size * −1 +
6 p.board.filter(_ == Some(King(Max))).size * 2 +
7 p.board.filter(_ == Some(King(Min))).size * −2).toDouble / 24
8

9 }
10 }

Listing 4: NaiveDraughtsEvaluation

3.1.1 Quiescence Search Minimax

A key improvement in minimax-like algorithms is quiescence search, used to contrast the
�horizon e�ect�, which is the tendency of naive Minimax to be blind to developments that
human players would call �obvious� in consequence of a given move when they occur one
or more moves after the cuto� depth.

A typical example is found in Figure 2: assuming White is to move, if Red were to
take a material-based static evaluation for the position the resulting estimate might be
exceedingly optimistic.

The horizon e�ect is acknowledged as early as [GEC67], where it is countered with
the �secondary search� approach.

The evaluation function is therefore trustworthy only for positions that are quiescent.
The idea of quiescence search is to equip the agent with some heuristic function

to determine quiescence and, if necessary, carry out a further search for nonquiescent
positions that extends beyond cuto� depth.

Implementation We have equipped the Alpha-Beta algorithm with quiescence search
by integrating a further instance of BasicAlphaBeta, as seen in Listing 5.

Our augmented agent launches a simple minimax search of a given depth extraPlys

if at cuto� depth the position is non-quiescent.
We have chosen to use a naive implementation that inevitably takes the static evalu-

ation after extraPlys further plys, even if the position reached then is nonquiescent, as
this is the simplest way to guarantee termination irrespective of the choice of q.

3This is trivially true under the assumption that a draw is forced after the n-th ply without a winner,
as discussed in subsection 2.1
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Figure 2: A nonquiescent position. White moves.

0 /**
1 * Simple AlphaBeta enhanced with quiescence search
2 *

3 * @param extraPlys �xed depth of extra search if "ordinary" search depth is exhausted
4 * on a non−quiescent position
5 */
6 class QuiescenceAlphaBeta[G <: Game[G]](e: MinimaxEvaluation[G],
7 o: AlphaBetaOrdering[G],
8 depth: Int,
9 q: QuiescenceCheck[G],

10 extraPlys: Int,
11 maximize: Boolean = false)
12 extends BasicAlphaBeta[G](e, o, depth, maximize) {
13 override def iter(l: Either[LivePosition[G], TerminalPosition[G]],
14 plyLeft: Int,
15 alpha: Double = Double.NegativeInfinity,
16 beta: Double = Double.PositiveInfinity,
17 nega: Int = 1): (Double, AlphaBetaStats[G]) =
18 l match {
19 case Right(t: TerminalPosition[G]) => onTerminal(t, plyLeft, nega)
20 case Left(l: LivePosition[G]) =>
21 if (plyLeft <= 0)
22 if (q(l))
23 onStatic(l, plyLeft, nega)
24 else
25 // Position is non−quiescent, we do a further local, small
26 // minimax search
27 (new BasicAlphaBeta[G](e, o, extraPlys, maximize))
28 .iter(Left(l), extraPlys, alpha, beta, nega)
29 else
30 otherwise(l, plyLeft, alpha, beta, nega)
31 }
32 }

Listing 5: QuiescenceAlphaBeta
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Notice how the quiescence search contributes to the collected statistics, which will
allow us to estimate if and how it is competitive with a conventional minimax search
search of depth ply + extraPly.

3.1.2 Killer Heuristic

Literature describes several variations on the �killer heuristic�; Gillogly, who used it in
the TECH program, gives the common underlying inutition as follows: �a move which
generates a prune in one set of moves may also generate a prune in the adjacent set (�rst
cousin positions) so that this �killer� move should be tried �rst� [Gil72].

Therefore, programs using some form of killer heuristic will save moves that are refu-
tations on a killer list or bu�er, and examine the moves at each node as they are generated
to see whether one of them matches a move on the killer list [Gil72].

According to [AN77], implementations can di�er, among other things, on whether a
separate list is kept for each ply.

We have therefore provided two separate implementations, SimpleKillerAlphaBeta
(reproduced in appendix A.3) and KillerAlphaBeta (not reproduced): the former uses
a single killer list, whereas the latter uses a separate killer list for each ply.

We have chosen for simplicity to make the killer list not persistent between di�erent
searches; this has been experimentally shown to su�ce in yielding an appreciable gain in
??.

3.2 Monte Carlo Tree Search

Monte Carlo Tree Search, shortened in MTCS, is a kind of simulation-based search [GS11];
it belongs to a family of search algorithms that evaluate nodes by repeatedly carrying
out simulations � i.e. descending a single path in a game tree according to a randomized
simulation policy � in order to estimate their utility.

Abramson �rst introduced the expected outcome model in [Abr90] and shown that
the game-theoretic value of a game-tree node is approximated by the expected value of
the game's outcome given random play from that node on.

An important di�erence with Minimax-based approaches is that the expected outcome
approach considers the relative merit of game-tree nodes rather than board positions, and
is thus, in its simplest formulation, independent of domain knowledge.

�Flat Monte Carlo� is the simplest simulation search algorithm and proceeds by uni-
form selection [Bro+12]; its drawback is that it makes an ine�ective use of computational
resources.

Intuitively, uniform selection implies that an equal number of simulations are spent
on �interesting� and �uninteresting� moves alike. In the extreme case, if a position allows
for exactly three moves, one of which directly leads to a loss and the other two are root
to a large and �interesting� subtree that may or may not lead to wins, losses and draws,
at the limit 1/3 of simulations will be spent on the former move, when they could be spent
on gathering more information for moves two and three.

We would like to include features of a Shannon Type B strategy (one that focuses on
�plausible moves�) in �at Monte Carlo, which in the limit is a Shannon type A strategy,
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by focusing our e�orts on promising moves � however, we wouldn't want to run the risk
of discarding a good move after a few unlucky simulations.

The Monte Carlo Tree Search algorithm thus incorporates the following steps [Bro+12]
in every iteration, until a pre-allocated budget is exhausted:

� Starting from the root node, the tree is descended according to the simulation

policy, until a non-terminal state with unexpanded children is reached and a node
is then chosen to be expanded.

� A simulation is carried out according to the default policy.

� The result of the simulation is backpropagated through the parent nodes.

Figure 3, excerpted from [GS11], illustrates the progression of the algorithm on a
game tree.

3.2.1 Bandit problems and UCT

As mentioned in the previous paragraph, we would like to focus on moves that appear to
be �interesting�, but we wouldn't want to run the risk of discarding a good move based
on inconclusive data.

In this respect, our search problem can be framed as a �bandit problem�, an element in
a class of problems akin to that of repeatedly choosing to play one out of k slot machines4

with distinct, unknown distributions of rewards in order to maximise the cumulative
reward.

This is the nature of the exploitation-exploration dilemma studied in bandit problems
[Bro+12], i.e. the need to balance exploitation the �arm� believed to be optimal at a given
time with the need to gather more information in order to have adequate con�dence on
the underlying distribution of arms that appear suboptimal.

Kocsis and Szepesvári [KS06] have shown that in Monte-Carlo tree search it is possible
to treat each state of the search tree as a multi-armed bandit, in which each action
corresponds to an arm of the bandit and have proposed UCT, an extremely popular
variant of MTCS.

In UCT, the tree policy selects actions by using the UCB1 algorithm, which maximises
an upper con�dence bound on the value of actions; UCT is proven to converge on the
minimax action value function.

When applying the tree policy to a node s, a child node a is selected to maximise

Q(s,m)︸ ︷︷ ︸
MC value

+ c

√
logN(s)

N(s,m)︸ ︷︷ ︸
exploration bonus

where Q(s,m) is the �Monte-Carlo value� of taking move m from the position corre-
sponding to node s � or the mean outcome of previous all simulations, N(s,m) is the
number of times move m has been taken from s previously and N(s) is the number
of times s has been expanded; the value is augmented by an exploration bonus that is
highest for rarely visited state-action pairs [GS11].

4known as �one-armed bandits�
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Figure 3: Five iterations of MTCS (from [GS11])
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Implementation In MTCS.scala, reproduced in appendix A.1, we give a recursive
implementation that follows closely the pseudocode for UCT reported in [GS11].

The budget is measured in total nodes expanded instead of wall clock time, in order
to make it independent of optimizations in the implementation (or lack thereof).

Although domain knowledge can and often is incorporated in the tree policy � in
fact, according to [Bro+12], the full bene�t of MCTS is �typically not realised� until the
algorithm is thus adapted � this basic implementation of MTCS is domain-agnostic.
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4 Conclusion and future work

We have presented an architecture that can host di�erent sorts of two-player, determin-
istic games and di�erent sorts of agents that play such games.

We have presented an implementation of the game of draughts and two agents, one
based on classical minimax and one based on MTCS.

A number of possible extensions and optimizations can be thought of; we give a
necessarily non-exhaustive list.

The simplest possible extension probably is the addition of a new game using the
framework speci�ed in Game.scala.

Furthermore, the framework itself could be extended as to allow for games with more
than two players, stochastic games such as Backgammon or games of imperfect informa-
tion, for example through a subclassing of Position and a modi�cation of class Match in
order to serve an appropriately �obfuscated� version of each position to di�erent players.

The UCT implementation could be extended with domain-speci�c optimizations and
additional heuristics such as the history heuristic could be implemented in the Alpha-Beta
agent.

Given enough CPU time, it would be interesting to run extensive benchmarks to
characterize precisely the performance of agents and �t a function to predict the optimal
value of c for UCT in relation to the allocated budget.

A further interesting nontrivial extension might be using a genetic, evolutionary or
swarm-based approach to derive optimal evaluation functions.

While hardly an essential improvement, the usability of the framework also could
be improved (thus facilitating the more fundamental additions discussed in the previous
paragraphs) by providing an extended framework for benchmarks, extending class Match
in order to realize a client-server model or, �nally, adding a graphical user interface for
play and visualization of statistics, perhaps leveraging Scala.js for in-browser execution.
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A Long listings

A.1 UCT Agent

0 /**
1 * Implements an (ine�cient) UCT agent based on Gelly 2011
2 *

3 * @param budget the number of total nodes (including default policy) to explore before ←↩
stopping

4 * @param c the exploration constant; the larger it is, the more the algorithm favors exploration
5 * over exploitation.
6 */
7 class UCTAgent[G <: Game[G]](val budget: Int,
8 val c: Double,
9 val maximize: Boolean = false,

10 val r: Random)
11 extends AI[G] {
12 type Utility = Int

13 type NodeCount = Int

14

15 def SimDefault[G <: Game[G]](
16 p: Either[LivePosition[G], TerminalPosition[G]]): (Utility, NodeCount) =
17 p match {
18 case Right(t: TerminalPosition[G]) => (t.utility, 0)
19 case Left(l: LivePosition[G]) => {
20 val map = l.successor()
21 val randomMove = r.shuffle(map.keys.toList).head
22 val (util, nodes) = SimDefault((map.get(randomMove).get))
23 (util, nodes + 1)
24 }
25 }
26

27 def SelectMove[G <: Game[G]](p: LivePosition[G],
28 t: UCTNode[G],
29 c: Double): Move[G] = {
30 def N_s: Double = t.den.toDouble
31 def N_s_a(a: Move[G]): Double =
32 t.children.get(a).map(_.den).getOrElse(0).toDouble
33 def Q_s_a(a: Move[G]): Double =
34 t.children.get(a).map((a) => a.num / a.den).getOrElse(0).toDouble
35 def argmax[A](a: Seq[A], f: A => Double) = a.sortBy[Double](f).last
36 def argmin[A](a: Seq[A], f: A => Double) = a.sortBy[Double](f).head
37 if (t.maxNode)
38 argmax(p.successor.keys.toSeq,
39 (a: Move[G]) => Q_s_a(a) + c * Math.sqrt(Math.log(N_s) / N_s_a(a)))
40 else
41 argmin(p.successor.keys.toSeq,
42 (a: Move[G]) => Q_s_a(a) − c * Math.sqrt(Math.log(N_s) / N_s_a(a)))
43 }
44

45 /**
46 * @return Updated tree, spent budget and value of last simulation to be propagated
47 */
48 def Simulate(p: LivePosition[G],
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49 node: UCTNode[G]): (UCTNode[G], NodeCount, Utility) = {
50 val move = SelectMove(p, node, c)
51 p.successor.get(move).get match {
52 case (Right(t)) =>
53 // Terminal game position, return utility
54 (UCTNode(p,
55 node.num + t.utility,
56 node.den + 1,
57 node.maxNode,
58 node.children),
59 1,
60 t.utility)
61 case (Left(l)) =>
62 if (node.children contains move) {
63 // Already in tree and not terminal, continue with tree policy
64 ((rec: (UCTNode[G], NodeCount, Utility)) => {
65 (UCTNode(p,
66 node.num + rec._3, // Backup
67 node.den + 1,
68 node.maxNode,
69 node.children updated (move, rec._1)),
70 rec._2 + 1,
71 rec._3)
72 })(Simulate(l, node.children.get(move).get))
73 } else {
74 // Not in tree, not terminal: expland
75 ((sim: (Utility, NodeCount)) => {
76 (UCTNode[G](p,
77 node.num + sim._1,
78 node.den + 1,
79 node.maxNode,
80 (node.children updated (move,
81 UCTNode(l, sim._1, 1, !(node.maxNode), Map.empty)))),
82 sim._2 + 1,
83 sim._1)
84 })(SimDefault(Left(l)))
85 }
86 }
87 }
88

89 def UCTSearch(p: LivePosition[G],
90 budget: NodeCount): (Move[G], NodeCount, UCTNode[G]) = {
91 var tree = new UCTNode[G](p, 0, 0, maximize, Map.empty)
92 var budget_* = budget

93 while (budget_* > 0) {
94 val (newtree, spent, _) = Simulate(p, tree)
95 tree = newtree

96 budget_* = budget_* − spent

97 }
98 (SelectMove(p, tree, 0), budget − budget_*, tree)
99 }

100

101 def debug(
102 p: LivePosition[G]): MoveWithStats[G, Move[G], DebugStats[UCTAgent[G]]] =
103 ((x: (Move[G], Int, UCTNode[G])) =>

19



104 MoveWithStats[G, Move[G], DebugStats[UCTAgent[G]]](
105 x._1,
106 new UCTStats(x._2, x._3)))(UCTSearch(p, budget))
107 }

A.2 BasicAlphaBeta

0 class BasicAlphaBeta[G <: Game[G]](e: MinimaxEvaluation[G],
1 o: AlphaBetaOrdering[G],
2 depth: Int,
3 maximize: Boolean = false)
4 extends AbstractAlphaBeta[G](e, o, depth, maximize) {
5 def onTerminal(t: TerminalPosition[G],
6 plyLeft: Int,
7 nega: Int): (Double, AlphaBetaStats[G]) = {
8 (nega * t.utility.toDouble, new AlphaBetaStats(0, 1, 0, 0))
9 }

10

11 def onStatic(l: LivePosition[G],
12 plyLeft: Int,
13 nega: Int): (Double, AlphaBetaStats[G]) = {
14 (nega * e(l), new AlphaBetaStats(0, 0, 1, 0))
15 }
16

17 def otherwise(p: LivePosition[G],
18 plyLeft: Int,
19 alpha: Double,
20 beta: Double,
21 nega: Int): (Double, AlphaBetaStats[G]) = {
22 var alpha_* = alpha

23 var runningStats = new AlphaBetaStats[G](1, 0, 0, 0)
24 try {
25 p.successor.toSeq
26 .sortWith((x: (Move[G], _), y: (Move[G], _)) => o.lt(x._1, y._1))
27 .foreach { m =>
28 {
29 val (negv, stats) =
30 this.iter(m._2, plyLeft − 1, −beta, −alpha_*, −nega)
31 val v = −negv
32 alpha_* = max(alpha_*, v)
33 runningStats = runningStats + stats

34 if (alpha_* >= beta)
35 throw new Cut(alpha_*, runningStats)
36 }
37 }
38 (alpha_*, runningStats)
39 } catch {
40 case (p: Cut) => (p.v, p.stats + new AlphaBetaStats[G](0, 0, 0, 1))
41 }
42 }
43 }
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A.3 SimpleKillerAlphaBeta

0 /**
1 * Simple extension of BasicAlphawBeta with killer heuristic
2 * implemented with a _single_ list for all plys.
3 *

4 * According to Akl77, "programs di�er in the number of killer moves
5 * saved, the number of matches looked for, and on whether a separate
6 * list is kept for each ply", so there is at least precedent.
7 *

8 * @param killerSize *total* size of the killer list
9 */

10 class SimpleKillerAlphaBeta[G <: Game[G]](e: MinimaxEvaluation[G],
11 o: AlphaBetaOrdering[G],
12 depth: Int,
13 killerSize: Int = 10,
14 maximize: Boolean = false)
15 extends BasicAlphaBeta[G](e, o, depth, maximize) {
16

17 var killerList: FiniteQueue[Move[G]] = new FiniteQueue(Queue(), killerSize)
18

19 object killerOrdering extends Ordering[Move[G]] {
20 /*
21 * if x is on the killer list and y is not x < y (comes �rst)
22 * if y " " then y < x
23 * defer to usual ordering otherwise
24 */
25 def compare(x: Move[G], y: Move[G]): Int = {
26 if (killerList.contains(x) && !killerList.contains(y))
27 −1
28 else if (!killerList.contains(x) && killerList.contains(y))
29 +1
30 else
31 o.compare(x, y)
32 }
33 }
34

35 override def debug(
36 p: LivePosition[G]): MoveWithStats[G, Move[G], AlphaBetaStats[G]] = {
37 // Wipe killer list at each new search
38 killerList = new FiniteQueue(Queue(), killerSize)
39 super.debug(p)
40 }
41

42 override def otherwise(l: LivePosition[G],
43 plyLeft: Int,
44 alpha: Double,
45 beta: Double,
46 nega: Int = 1): (Double, AlphaBetaStats[G]) = {
47 var alpha_* = alpha

48 var runningStats = new AlphaBetaStats[G](1, 0, 0, 0)
49

50 try {
51 l.successor()
52 .toSeq
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53 .sortWith((x: (Move[G], _), y: (Move[G], _)) =>
54 killerOrdering.lt(x._1, y._1))
55 .foreach { m =>
56 {
57 val (negv, stats: AlphaBetaStats[G]) =
58 this.iter(m._2, plyLeft − 1, −beta, −alpha_*, −nega)
59 val v = −negv
60 alpha_* = max(alpha_*, v)
61 runningStats += (stats)
62 if (alpha_* >= beta) {
63 killerList = killerList.enqueue(m._1)
64 throw new Cut(alpha_*, runningStats)
65 }
66 }
67 }
68 (alpha_*, runningStats)
69 } catch {
70 case (c: Cut) => {
71 (c.v, c.stats + new AlphaBetaStats[G](0, 0, 0, 1))
72 }
73 }
74 }
75 }
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