
Verifying CSMA

Tobia Tesan

Abstract

We use the language CCS and Hennessy-Milner logic to formally verify the correctness of
CSMA defined as

1. the presence of certain desirable properties in a “reasonably detailed” model of the
protocol as defined in the standard

2. the bisimilaritity to a “reasonable” specification which can be believed correct by in-
spection

We use the Edinburgh Concurrency Workbench [CPS90] as a tool to partly automate the
above task.

Firstly, in section 1 we introduce 802.3 and CSMA/CD [IEEE802.3].
In subsection 2.1 we draft a specification for the service referencing the standard.
We briefly discuss its important features and the potential pitfalls that await when drafting

such a specification in subsubsection 2.1.1.
We then give a CCS model of CSMA, as defined in [IEEE802.3], with some slight sim-

plification: we first give a “naive” (and incorrect) version in subsection 2.2 and we refine
it.

In section 3 we show that the resulting final model (listing 6) adheres to the specification
in the strongest conceivable sense, i.e. weak bisimilarity.

We then give HML formulas for properties such as liveness and fairness and prove that
the model satisfies them.

Throughout, we discuss the inherent limitations of the CCS as a formalism to carry out
such a task; in Appendix A we present a custom tool developed for the purpose of typesetting
this report.

Contents

1 Introduction 2
1.1 Overview of 802.3 and CSMA/CD . 2

1.1.1 Service specification for MAC . 3
1.1.2 Protocol specification for CSMA/CD . 3

1.2 CSMA/CD and the (limitations of) CCS . 4

2 Modeling 7
2.1 Service Specification . 7

2.1.1 Alternate perspectives . 7
2.2 Protocol . 12

2.2.1 Transmitter . 13
2.2.2 Receiver . 15
2.2.3 The medium . 16

2.3 A question of time . 18

3 Verification 22
3.1 Equivalence checking . 22
3.2 Property checking . 22

1

4 Related works 24

5 Conclusions 24

A Software tools 26

B CWB Scripts 27
B.1 Specification . 27
B.2 Implementation . 28
B.3 Verification . 29

B.3.1 Properties of alternate agents from section 2 32
B.3.2 Comparison with [Par87] . 35

List of Figures

1 Service Specification for MAC (source: [IEEE802.3]) 4
2 Protocol Specification for CSMA/CD, transmitter side (source: [IEEE802.3]) 5
3 Protocol Specification for CSMA/CD, receiver side (source: [IEEE802.3]) 6
4 The relationship between CCS actions and time in the model of listing 5 8
5 Diagram of Tx1 from listing 5 . 9
6 Diagram of Rx1 from listing 5 . 9
7 Diagram of Counter from listing 1 . 10
8 A two-station, full duplex network . 13
9 A two-station, half duplex network with CSMA . 13
10 The relationship between CCS actions and time in a collision-free scenario in the

model of listing 4 . 19
11 The relationship between CCS actions and time in a collision scenario in the model

of listing 4 . 20
12 Diagram of Medium from listing 6 . 21
13 Diagram of Tx1 from listing 6 . 23
14 Diagram of Rx1 from listing 6 . 24
15 Attempting to produce a state transition diagram with CWB and DaVinci results

in this. 26

1 Introduction

1.1 Overview of 802.3 and CSMA/CD

Protocol and service specifications To reduce their design complexity, most networks are
organized as a stack of layers or levels; the ISO/OSI model specifies seven layers, the lowermost
of which are the physicial and data link layer [Tan03].

Recall that a service is a set of primitives (operations) that a layer provides to the layer above
it. The service defines what operations the layer is prepared to perform on behalf of its users, but
it says nothing at all about how these operations are implemented.

A protocol, in contrast, is a set of rules governing the communication between the peer entities
within a layer [Tan03].

Therefore, a service specification specifies what a service is expected to expose, a protocol
specification specifies how the service is to be implemented in terms of the service specification
for the lower layer.

2

MAC and LLC sublayers 802.11 standards subdivide the ISO/OSI data link layer into two
sublayers, the Medium Access Control (MAC) and the Logical Link Control (LLC) layers.

MAC, the lower sublayer, provides flow control and multiplexing for the transmission medium,
and exposes an interface – specified by a service specification – that abstracts away the medium’s
finer details to its clients, which include the LLC layer [IEEE802.3].

CSMA/CD is the MAC layer protocol used in the Ethernet standard, and, therefore, it ex-
poses the MAC service specification; in the next subsection we shall summarize the MAC service
specification and the protocol specification for CSMA/CD.

1.1.1 Service specification for MAC

Figure figure 1 is taken from [IEEE802.3] and outlines the Service Specification for MAC and its
relationship to the Physical service layer.

It consists of two primitives:

� MA DATA.indication, which is raised by the implementation to signal a client that a message
has been received and is available for consumption. Its arguments are:

– destination address,

– source address,

– mac service data unit,

– frame check sequence

� MA DATA.request which is raised by the service client when it requires a message to be sent.
Its arguments are:

– destination address,

– source address,

– mac service data unit,

– frame check sequence

– reception status

We shall not delve into the meaning of the arguments, as they are inconsequential at the level
of abstraction we choose to model and with the relaxations we shall later impose (such as limiting
ourselves to two stations).

1.1.2 Protocol specification for CSMA/CD

CSMA/CD is used where there is a possibility of collision due to the half-duplex nature of the
medium (i.e. legacy 10BASE2 or 10BASE5 networks or now-rare 10BASE-T networks with a hub
instead of a switch connected to each station with a full duplex cable).

CSMA/CD detects when a collision happens on the medium and ceases transmission (after
signaling collision to the other stations with a jam signal); the method for detecting a collision is
media-dependent [IEEE802.3].

We shall restrict ourselves to discussing the half duplex operation mode (the essential feature
of the protocol that we wish to study, i.e. collision detection, is inconsequential in full duplex
mode).

The essence of the protocol is detailed in flowchart form in figure 2 and figure 3.
In half duplex mode, Transmit Media Access Management attempts to avoid contention with

other traffic on the medium by monitoring the carrier sense signal and deferring to passing traffic.
When the medium is clear, frame transmission is initiated (after a brief interframe delay to

provide recovery time for other CSMA/CD MAC sublayers and for the physical medium).
When transmission has completed without contention, the CSMA/CD MAC sublayer so in-

forms the MAC client and awaits the next request for frame transmission.

3

Figure 1: Service Specification for MAC (source: [IEEE802.3])

Collision window Now, even with deferring if multiple stations attempt to transmit at the
same time (or within a short window of time called the “collision window”, before its transmitted
signal has had time to propagate to all stations on the CSMA/CD medium), it is possible for them
to interfere with each other’s transmissions: this is called a collision.

Once the collision window has passed, a transmitting station is said to have acquired the
medium; subsequent collisions are impossible, barring malfunctioning stations or media.

When a collision is detected by a station, the station enforces the collision by transmitting a
bit sequence called jam. This ensures that the duration of the collision is sufficient to be noticed
by the other transmitting station(s) involved in the collision.

Then, the transmission is terminated and the station schedules another transmission attempt
after a randomly selected time interval.

Gigabit extensions In half duplex mode and at an operating speed of 1000 Mb/s the protocol
admits a few variations [IEEE802.3]:

� the minimum frame size is insufficient to ensure proper operation, in which case the MAC
sublayer will append a sequence of padding bits so that the duration of the resulting trans-
mission is sufficient

� the CSMA/CD MAC may optionally transmit additional frames without relinquishing con-
trol of the transmission medium, up to a specified limit.

In our analysis in section 2, we shall ignore these extensions.

1.2 CSMA/CD and the (limitations of) CCS

As is evident from the previous section, the essential features of CSMA/CD are dependent on the
notion of time, which CCS does not model.

Moreover, CSMA/CD operates with a broadcast medium, and not an ideal one at that (the
propagation delay on a physical medium does in fact constitute the raison d’etre for the notion of
“collision window”).

The communication in standard CCS is synchronous and happens via handshake [AILS07].
On a cursory glance, CCS appears therefore ill-equipped to model such a system in a natu-

ral way when compared to other calculi, such as Timed CCS, which models systems such that

4

TransmitFrame

Transmit
ENABLE?

assemble frame

burst
continuation?

deferring on?

start transmission

halfDuplex
and

collisionDetect?

transmission
done?

send jam

increment attempts

too many
attempts?

compute backoff

wait backoff time

Done:
transmitOK

Done:
excessiveCollisionError

no

yes

yes

no

no

no

yes

yes

yes

no

‡

no

yes

late

‡ For Layer Management

Done:
transmitDisabled

‡

yes

no

collision and >
100 Mb/s?

*Applicable only to half duplex operation at 1000 Mb/s

*

Done:
lateCollisionErrorStatus

Figure 2: Protocol Specification for CSMA/CD, transmitter side (source: [IEEE802.3])

5

ReceiveFrame

Receive
ENABLE?

start receiving

done
receiving?

disassemble frame

extra bits?

Done:
receiveOK

no

yes

yes

no

‡

no

yes

‡ For Layer Management

Done:
receiveDisabled

‡

frame

(collision)
too small?

recognize
address?

frame
too long?

valid

sequence?
frame check

valid

field?
length/type

Done:
lengthError

Done:
frameCheckError

Done:
alignmentError

Done:
frameTooLong

‡

‡

yes

yes

yes

yesyes

no

nono

no

no

Figure 3: Protocol Specification for CSMA/CD, receiver side (source: [IEEE802.3])

6

“behaviour depends on the time at which the external stimuli arise” [Wan91], and CBS, which is
devoted to broadcast media [Pra95].

Moreover a feature of the protocol specification is randomness, and therefore its “correctness”
is defined as very low probability of repeated collisions leading to a livelock situation (from which
the protocol escapes by erroring out after an arbitrarily large number of retries).

Similarly, we cannot neither model the randomness or formalize a specification in term of
probability (which, anyway, is not explicitly given in the standard); calculi such as [HJ91] and
[YL92] allow for reasoning about probability in nondeterminism.

We shall see that a reasonably accurate and useful model can, these limitations notwithstand-
ing, be had, although there are a few pitfalls that await.

2 Modeling

We will now get involved in the actual modeling of the service specification and of the protocol.
We will narrow the scope slightly, by:

� limiting ourselves to a two-station network

� considering the half-duplex version of the protocol exclusively

� ignoring the extensions for gigabit networks detailed in section 1

� assuming the hardware will always work correctly, ruling out for example the possibility of
late collisions due to malfunctioning interfaces.

2.1 Service Specification

The MAC service specification in a two-station network would present itself to the stations as in
listing 2.1.1 – i.e. a full duplex channel between two stations.

In fact, what the protocol sets out to do is essentially to make the system of figure figure 2.1.1
appear to the service clients like the system of figure listing 2.1.1 – i.e. we want to abstract away
the intricacies of the half-duplex medium and make it appear to the MAC clients as close as
possible as a full-duplex medium equipped with a buffer in both the receiving and transmitting
side.

Observe, then, that in a pair of stations connected by a full-duplex channel there can be at
most two messages “in flight” between any transmitter and respective recipient at any given time:
one in the transmitting station’s buffer, one in the receiver’s buffer; we shall expect the same of
our implementation.

So, we shall then first draft an “intuitively” reasonable CCS model for the system of figure
listing 2.1.1 in listing 5, which will readily serve as a specification for the protocol.

While our calculus is not equipped to reason about temporal aspects, we can approximate time
through the actions begin1 and end1 , which signify respectively the beginning and the end of
transmission over a full-duplex half-channel, as illustrated in figure 4.

Do note that a request1is matched by an indication1 at Rx2 (i.e. indicationi is the
reception of a message sent from the i-th station).

2.1.1 Alternate perspectives

Before going on to discuss the protocol implementation, we can take a moment to observe that
another way of writing a specification, leveraging the observation in the previous paragraph con-
cerning the number of in-flight messages at any given time, is that of listing 1: the process Spec

found therein is weakly bisimiliar to that of listing 5.
Weak bisimilarity is the relationship we shall expect to mainly reason about, since it’s the

strongest relationship modulo τ -actions which model internal/unobservable behaviour of our sys-
tems (and the branching structure they induce, see [GV15]).

7

begin1 end1

begin1

request1

indication1

Tx1Spec

Rx1Spec

Tx1

Medium

t

Tx1Spec

Rx1Specend1

Figure 4: The relationship between CCS actions and time in the model of listing 5

8

2

1

Tx1Spec

’begin1

request1

’end1

Figure 5: Diagram of Tx1 from listing 5

Rx1Spec

2

1 ’indication2

begin2

end2

Figure 6: Diagram of Rx1 from listing 5

9

* Alternate spec for MAC:

* Two parallel counters/

* "message queues" of size 2

agent Counter10 = request1.Counter11;

agent Counter11 = request1.Counter12 + ’indication1.Counter10;

agent Counter12 = ’indication1.Counter11;

agent Counter20 = request2.Counter21;

agent Counter21 = request2.Counter22 + ’indication2.Counter20;

agent Counter22 = ’indication2.Counter21;

agent Spec = (Counter10 | Counter20);

Listing 1: Alternate CCS process modeling the network of listing 2.1.1

1 4

2

Counter

3

6

5

8

7

9

’indication2

’indication1
request1request1

’indication2

’indication1
request2

request1

’indication1

’indication2

request2

request1request1

’indication2request2

request2
’indication1’indication1

’indication1

request2

request2

request2

request1

’indication2

’indication2

request1

Figure 7: Diagram of Counter from listing 1

10

* (Bad!) alternate spec for MAC:

* two stations, a half duplex medium

* and a mutex

agent Sem = p.v.Sem;

agent Tx1Spec’ = request1.’p.’begin1.’end1.’v.Tx1Spec’;

agent Rx1Spec’ = begin2.end2.’indication2.Rx1Spec’;

agent Tx2Spec’ = Tx1Spec’[request2/request1,

begin2/begin1, end2/end1];

agent Rx2Spec’ = Rx1Spec’[begin2/begin1, end2/end1,

begin1/begin2, end1/end2,

indication1/indication2];

agent HalfDuplexSpec = (Tx1Spec’ | Rx1Spec’ | Tx2Spec’ | Rx2Spec’ | Sem) \

{ p, v, begin1, end1, begin2, end2 };

Listing 2: A third alternate (and incorrect) model

Full duplex = half duplex + mutex? We shall now provide yet one more alternate specifi-
cation and take a digression the relevance of which will be apparent later in subsection 2.3.

Consider the alternate specification of listing 2.
It appears “reasonable” intuitively: if we had a shared medium (a piece of cable?) and the

ability for the stations to achieve mutual exclusion through some other means (wireless commu-
nication?), we would be excused for thinking that the result ought to be “the same as” listing 5.

However listing 2 is not weakly bisimilar to listing 5.
A counterexample can be had with CWB through the command dfweak(HalfDuplexSpec,

Spec);.
CWB outputs the following distinguishing (W)HML formula1:

⟪request2⟫Jrequest2K⟪request1⟫⟪′indication1 ⟫tt

By inspecting it we see that: only for MACSpec it is possible to perform a request2 such that
if a further request2 is performed then it is [always] possible to perform a request1 followed by
an indication1 [and have the system not to deadlock].

Particularly, the problem is that Spec can be led to the following state (through the sequence
of transitions in listing 10):

(’begin1.’end1.’v.Tx1Spec’

| Rx1Spec’

| (’p.’begin1.’end1.’v.Tx1Spec’)[begin2/begin1,end2/end1,request2/request1]

| (’indication2.Rx1Spec’) [begin2/begin1, begin1/begin2,

end2/end1, end1/end2,

indication1/indication2]

| v.Sem

) \ {begin1,begin2,end1,end2,p,v}

We see that Tx2 has successfully acquired and released the mutex and has sent a message
to the receiving station; Rx2 is ready to perform an indication , representing the fact that the

1Weak HML differs from “standard” HML in that modal operators are defined in terms of weak actions, e.g.

P ⊢ ⟪a⟫F iff there exists P ′ s.t. P
a⇒ P ′, P ′ ⊢ F

11

receiver has correctly received and stored in its buffer a message, which is ready for the service
client to read.

Now, after the second request2, Tx2 has newly acquired the channel and is not going to
release it until Rx2 is able to receive the message; this cannot happen before Rx2 has performed
indication1 .

Therefore, it is now impossible for the system to perform a request1 followed by a indication1
action, since the channel is busy.

Do observe that we have 3 out of 4 of the Coffman conditions2; we can get out of the impasse
because we don’t have circularity, in that we can decide to perform a indication2 action; if we
choose not to, we are effectively locked.

The intuition behind the incorrect specification was that the medium would behave like
a cable, and, therefore, by definition of “transmitter” and “receiver” Tx would not
depend in any way on the status of Rx for its ability to transmit and progress – which
is not the case given the synchronous, handshak-y nature of CCS.

This serves to remind us of the limitations and pitfalls that were mentioned in subsection 1.2.
The incorrect specification can be amended into that of listing 3, where the transmitter may

give up the channel and let the other one take over (thus voiding the third Coffman condition so
that progress does not have to depend on Rx), and which is in fact weakly bisimilar to the others.

* (Fixed) alternate spec for MAC:

* two stations, a half duplex medium

* and a mutex

agent Sem = p.v.Sem;

* "Fix": Tx may give up the mutex

agent Tx1Spec = request1.Transmitting1;

agent Transmitting1 = ’p.(’v.Transmitting1 + ’begin1.’end1.’v.Tx1Spec);

agent Rx1Spec = begin2.end2.’indication2.Rx1Spec;

agent Tx2Spec = Tx1Spec[request2/request1,

begin2/begin1, end2/end1];

agent Rx2Spec = Rx1Spec[begin1/begin2, end1/end2,

indication1/indication2];

agent HalfDuplexSpec = (Tx1Spec | Rx1Spec | Tx2Spec | Rx2Spec | Sem) \

{ p, v, begin1, end1, begin2, end2};

Listing 3: “Fixed” version of listing 2

This exercise will turn out to be relevant in subsection 2.3.

2.2 Protocol

Having laid down the service specification in listing 5, we now set out to translate the algorithms
in figure 2, figure 3 into CCS processes.

2 Mutual exclusion; Resource holding; Lack of preemption; Circular waiting [Tan01]

12

req1 ind1

ind2 req2

buffer

buffer

medium

buffer

buffer

Figure 8: A two-station, full duplex network

req2ind2

ind1req1

CSMA CSMA
medium

Figure 9: A two-station, half duplex network with CSMA

2.2.1 Transmitter

We will assume that the interface is always enabled, thus ignoring the “transmit enable” flag (and
symmetrically the “receive enable” flag).

Recall, moreover, that at the beginning of the current section we have chosen to assume a
half duplex network and to ignore gigabit extensions, particularly burst mode, and to assume the
impossibility of late collisions.

We shall also ignore the “assembly” phase (which we assume happens instantaneously and
without affecting synchronization)

We therefore elide the related parts from the algorithm, which thus, once expressed in pseudo-
BASIC, becomes something along the following lines:

(* Begin: Client requests transmission *)

Deferring: IF Deferring is on

THEN GOTO Deferring

ELSE GOTO StartTrans

StartTrans: Start transmission

(* i.e. asynchronously transmit bytes *)

CollisionDetect : IF Collision Detected

THEN GOTO HandleCollision

ELSE GOTO FinishTrans

TransmissionDone: IF Done (* i.e. no more bytes *)

THEN GOTO End

ELSE GOTO CollisionDetect

HandleCollision: Send Jam

ATTEMPTS = ATTEMPS + 1

IF ATTEMPTS > K

13

THEN Error Out

ELSE GOTO Retry

Retry: BACKOFF = f(ATTEMPTS) for some f

Wait(BACKOFF seconds)

GOTO Deferring

(* End *)

We also abstract away from exponential backoff (only relevant in terms of speed and probability
of convergence, which we don’t care about / are not equipped to analyze).

(* Begin: Client requests transmission *)

Deferring: IF IS_DEFERRING

THEN GOTO Deferring

ELSE GOTO StartTrans

StartTrans: Start transmission

(* i.e. asynchronously transmit bytes *)

CollisionDetect : IF Collision Detected

THEN GOTO HandleCollision

ELSE GOTO FinishTrans

TransmissionDone: IF Done (* i.e. no more bytes *)

THEN GOTO End

ELSE GOTO CollisionDetect

HandleCollision: Send Jam

ATTEMPTS = ATTEMPS + 1

IF ATTEMPTS > K

THEN Error Out

ELSE GOTO Retry

Retry: GOTO Deferring

(* End *)

We also ignore the need to enforce collisions.
Enforcing collisions ensures that the duration of the collision is sufficient to be noticed by the

other transmitting station(s) involved in the collision, but we shall assume that this is always the
case, given the loose modeling of time that we shall employ.

For the same reason, we shall ignore deferring, since we won’t be able to reason in terms of
time enough to distinguish a delay of nanoseconds making up the transmission window from a
longer delay.

Therefore, we have:

(* Begin: Client requests transmission *)

StartTrans: Start transmission

(* i.e. asynchronously transmit bytes *)

CollisionDetect : IF Collision Detected

THEN GOTO HandleCollision

14

ELSE GOTO FinishTrans

TransmissionDone: IF Done (* i.e. no more bytes *)

THEN GOTO End

ELSE GOTO CollisionDetect

HandleCollision: ATTEMPTS = ATTEMPS + 1

IF ATTEMPTS > K

THEN Error Out

ELSE GOTO Retry

Retry: GOTO StartTrans

(* End *)

Finally, we ignore the counting of attempts and the possibility to error out in favour of infinite
retries (thus introducting the possibility of livelock in lieu of exiting with an error).

We are then left with the following algorithm:

(* Begin: Client requests transmission *)

StartTrans: Start transmission

(* i.e. asynchronously transmit bytes *)

CollisionDetect : IF Collision Detected

THEN GOTO HandleCollision

ELSE GOTO FinishTrans

TransmissionDone: IF Done (* i.e. no more bytes *)

THEN GOTO End

ELSE GOTO CollisionDetect

HandleCollision: GOTO StartTrans

(* End *)

A first, provisional formalization into CCS of the above algorithm is found in listing 4; it shall
however require further amendmends, discussed in subsection 2.3.

2.2.2 Receiver

We translate the algorithm in the flowchart in figure 3 as follows:

(* Begin *)

Receive: Start receiving

IF Done Receiving

THEN Collision

ELSE GOTO Receive

Collision: IF Collision Detected

THEN GOTO Receive

ELSE GOTO Process

Process: IF Unrecognized Address

15

THEN Error Out

IF Illegal Frame Length

THEN Error Out

IF Valid FCS

THEN Error Out

Disassemble Frame

(* End: signal reception to client *)

We don’t care about how the packet is actually processed (we only care about the parts of the
protocol dealing with contention).

In fact, we can assume processing happens instantaneously and without affecting synchroniza-
tion, and have this for our receiving algorithm:

(* Begin *)

Receive: Start receiving

IF Done Receiving

THEN Collision

ELSE GOTO Receive

Collision: IF Collision Detected

THEN GOTO Receive

ELSE GOTO End

(* End: signal reception to client *)

A provisional formalization into CCS of the above algorithm is found in listing 4; this, too,
shall require further amendmends, discussed in subsection 2.3.

2.2.3 The medium

The Tx1 and Rx1 (and symmetrically Tx2 , Rx2) processes found in listing 4 are a relatively
straightforward translation of the algorithms described above, except for begin , end , jam rx ,
silence rx actions that will be explained presently.

The non-trivial process which requires slightly greater inventive on our part is the process
Medium, which intends to model the behaviour of the physical medium that connects the two
stations.

Recall that we cannot model time in simple CCS, so we resort to some approximation to capture
temporal properties of communication: a transmitter performs a begin action to represent the
beginning of a transmission, which can then be ended by a corresponsind end or abort action,
representing respectively the natural and the premature end (due to a collision) of the transmission
of a MAC frame.

The Medium process, much like a physical cable, is tasked with propagating these actions to
Rx1 and Rx2 through corresponding begin rx and end rx actions; moreover, a jam rx action is
performed when a collision happens (i.e. after two begin actions), simulating [the beginning of]
the noise heard by receivers listening on the medium, followed by a corresponding silence rx

action when the medium becomes silent again after a collision.
It would be consistent with the above to have Medium also perform a begin rx1 and a

begin rx2 after a begin1 (and vice versa), but we don’t purely because each begin and end

is relevant only to one receiver; adding them would only clutter the model.
The drawing in figure 10 illustrates the way actions approximate time in a collision-free sce-

nario; the drawing in figure 11 does the same for a collision scenario.

16

**

** (Incorrect) model of CSMA protocol **

**

agent Rx1 = begin2_rx1.BeganRx1 + jam_rx1.silence_rx1.Rx1;

agent BeganRx1 = jam_rx1.silence_rx1.Rx1 + end_rx2.’indication2.Rx1;

agent Rx2 = Rx1[begin1_rx2/begin2_rx1, jam_rx2/jam_rx1,

silence_rx2/silence_rx1, end_rx1/end_rx2,

indication1/indication2];

agent Medium = (

begin1.(’begin1_rx2.(Crash1 + Clean1)) +

begin2.(’begin2_rx1.(Crash2 + Clean2)) +

abort1.abort2.’silence_rx1.’silence_rx2.Medium +

abort2.abort1.’silence_rx1.’silence_rx2.Medium);

agent Clean1 = end1.’end_rx1.Medium;

agent Clean2 = end2.’end_rx2.Medium;

agent Crash1 = begin2.’jam_rx1.’jam_rx2.’jam_tx1.’jam_tx2.Noise;

agent Crash2 = begin1.’jam_rx1.’jam_rx2.’jam_tx2.’jam_tx1.Noise;

agent Noise = (abort1.abort2.’silence_rx1.’silence_rx2.Medium +

abort2.abort1.’silence_rx1.’silence_rx2.Medium);

agent Tx1 = request1.WaitForTrans1;

agent WaitForTrans1 = ’begin1.CollisionDetect1;

agent CollisionDetect1 = jam_tx1.’abort1.WaitForTrans1 + ’end1.Tx1;

agent Tx2 = Tx1[request2/request1, begin2/begin1,

jam_tx2/jam_tx1, abort2/abort1,

end2/end1];

agent BrokenCSMA = (Tx1 | Tx2 | Rx1 | Rx2 | Medium) \

{begin1, begin2, end1, end2,

abort1, abort2, begin1_rx2, begin2_rx1,

jam_rx1, jam_rx2, silence_rx1, silence_rx2,

jam_tx1, jam_tx2, end_rx1, end_rx2};

Listing 4: First (incorrect) attempt at modeling CSMA

17

2.3 A question of time

We shall now see that our first attempt at a modeling of the algorithm is flawed.
We first attempt to verify equivalence of listing 4 to the specification in listing 5 using the

script in listing 11.
We observe that the implementation is trace equivalent to the specification, as expected.
It is not strongly bisimilar, which is expected – that would be asking too much because of the

τ transitions that denote the obviously different internal workings of either system.
However, we should like them to be weakly bisimilar, and this is not the case.
CWB returns the following distinguishing (W)HML formula:

Jrequest1KJrequest1K⟪request2⟫Jrequest2Kff

This means that: whenever Tx1 receives two request1 from its clients, it is possible for the
second station to receive a request2 that then makes it impossible to receive a second request2 .

Why?
The problem is not at all unlike the one we’ve discussed in detail in section 2.1.1.
We observe through the script in listing 12 that the system can evolve into the following process,

which only affords an indication1 action.

(CollisionDetect1

| WaitForTrans1[abort2/abort1, begin2/begin1,

end2/end1, jam_tx2/jam_tx1,

request2/request1]

| Rx1

| Rec1[begin1_rx2/begin2_rx1, end_rx1/end_rx2,

indication1/indication2, jam_rx2/jam_rx1,

silence_rx2/silence_rx1]

| ’begin1_rx2.(Crash1 + Clean1)

)\{abort1,abort2, begin1,begin2,

begin1_rx2, begin2_rx1, end1,end2,

end_rx1,end_rx2, jam_rx1,jam_rx2,

jam_tx1,jam_tx2, silence_rx1,silence_rx2}

The reason, once again, is due to the way the synchronous, handshaky nature of communication
standard CCS does not reflect the reality in which CSMA operates: in the real world we are
modeling it is always possible, by definition, for a station to transmit even if the
receiver is not ready.

At worst the receiver will miss some bytes or frames and the higher layers will request a
retransmission until they can put together a frame or packet (note that we don’t wish to model
this latter aspect), but the receiver will never block the transmitter and cause it to hold the
medium.

We can bend our model a bit in order to compensate for this.
We observe that in the real world, the transmitter will always be able to transmit without

being blocked by the receiver – i.e. the receiver will always be able to “catch up” with
the transmitter instantaneously.

We amend our model as in listing 6 by adding a catchup action, which does not involve
the Medium, but which we believe is a “fair” way of cheating in light of the reasons
mentioned in the above paragraph.

18

begin1 end1

begin1 end1 begin2 end2

begin2 end2

begin rx2 end rx2

request1

begin rx2 end rx2 begin rx1 end rx1

request2

begin rx1 end rx1

indication1

indication2

Tx1

Tx2

Medium

Rx1

Rx2

Tx1

Tx2

Medium

t

CollisionDetect1

Tx1

Tx2

(Crash1+Clean1) Medium

WaitForTrans1

Medium

Rx1

Figure 10: The relationship between CCS actions and time in a collision-free scenario in the model of listing 4

19

begin1

begin1 jam rx1

begin rx2

request1

begin rx2

Tx1

Tx2

Medium

Rx1

Rx2

Tx1

Tx2

Medium

t

begin2request2

(Crash1+Clean1)

jam rx2 jam rx1 jam rx2

jam rx1

jam rx2

abort1

abort2

abort1 abort2 silence rx1 silence rx2

jam rx1

jam rx2

silence rx1

silence rx2

begin1

WaitForTrans2

Medium

WaitForTrans1

Rx1

Rx2

WaitForTrans1

WaitForTrans2

Figure 11: The relationship between CCS actions and time in a collision scenario in the model of listing 4

20

11

5

10

7

12

13

14

Medium

18

2

20

Noise

6

4

17

3

15

19

8

9

’jam rx1

abort1

’jam tx2

’jam tx1

’silence rx1

begin1

’silence rx2

begin1

abort1

’end rx1

abort2

’jam rx2

begin2

’begin2 rx1

’end rx2

end1

abort2

’jam tx1

’jam rx2

end2

begin2

’begin1 rx2

’jam rx1

’jam tx2

Figure 12: Diagram of Medium from listing 6

21

3 Verification

After amending the agent as in listing 6, we can prove several interesting properties about it.

3.1 Equivalence checking

In listing 7 we check for some equivalences.
We see that CSMA and MACSpec are not strongly bisimiliar, as we would expect, because of

the different internal workings of the processes.
We see, as we wish, that CSMA and MACSpec are weakly bisimiliar.
Of course we expect the processes to be weak trace equivalent, since weak bisimilarity is a

strictly stronger property [GV15], which is confirmed by the CWB.

3.2 Property checking

Beside equivalence, we also check for specific properties in listing 8.
We believe these properties to be very reasonable to expect, even if they’re not explicitly

mentioned by the service specification in [IEEE802.3].

Liveness Firstly, we can check for liveness (i.e. absence of deadlocks), as defined by the HML
formula

Inv(tt)

where

Inv(P)
∆
= max(X.P ∧ [Act]X)

which reads as “the maximal set of states s.t. every state in it can lead to some state in the
set”.

We obtain, as expected, that both MACSpec and CSMA enjoy the property of liveness.

Livelocking We can also check for livelocks through the formula:

max(X.⟨τ⟩X)

Which reads as “the maximal set of states s.t. every state affords a τ -action to a state in the
set”, i.e. we check for the possibility of an infinite sequence of τ actions.

This time we expect a difference – the implementation can livelock if both stations keep
jamming each other indefinitely.

We see, as expected, livelock is only possible for the implementation, but we can live with
this as the idea behind the retrasmission algorithm – which we don’t model – is to make repeated
collisions very unlikely through random exponential backoff; moreover, after a number of retries
the implementation would eventually error out and the upper layers of the stack would take over
(see figure 2).

Starvation We can also check for lack of starvation through the following (Weak) HML formula:

Inv(Jrequest1K⟪indication1⟫tt)

This reads as “after a request1 action it is, eventually, always possible to perform an indication1

action”, that is, Tx1 can always “get through” to the matching Rx1 , irrespective of what Tx2 and
Rx2 are doing.

The Tx2 , Rx2 case is symmetric and we expect it to hold by construction.
We see furthermore that this property is not satisfied by our first attempt of listing 4.

22

4

Tx1

WaitForTrans1

CollisionDetect1

2

request1

jam tx1

’catchup2 ’end1

’begin1’abort1

Figure 13: Diagram of Tx1 from listing 6

23

5

3

Rx1

2

BeganRx1

’indication2

catchup1

silence rx1

jam rx1

begin2 rx1

end rx2

jam rx1

Figure 14: Diagram of Rx1 from listing 6

However, we note that the incorrect attempt of listing 4 does satisfy the weaker (to the point
of inconsequentiality?) following property:

Inv(Jrequest1K⟪Act⟫⟪indication1⟫tt)

i.e. it is at least always possible for a transmitter to talk to its matching receiver, possibly after
other communication has happened between Tx2 and Rx2 (note that request2,indication2 ∈

Act).

4 Related works

Parrow undertakes a similar task in [Par87].
Parrow’s modeling of the standard is roughly similar to ours.
In fact, Parrow’s specification is weakly bisimlar modulo different choices of labels, as seen in

listing 13 and so, by transitivity of bisimulation, is the modeling of the implementation.
This was not intentionally seeked out.

5 Conclusions

We have provided a CCS specification for the MAC service and a reasonably detailed CCS model
of the CSMA standard.

We have provided the HML description of some desirable properties (liveness and absence of
starvation), along with the undesirable property of livelocking.

We have shown that the standard respects the specification in a very strong sense, i.e. it is
weakly bisimilar, and enjoys the properties we wanted; we have also shown that our model can
livelock, and we have argued that this is of little practical interest.

24

The above steps required some amount of creative thinking, due to the limitations of standard
CCS for reasoning about real-time systems and due to the gaps in the standard and/or lack of a
sufficiently formal specification.

We have shown that CCS and HML can be used to study a real-world, real time system with
some care, and that the CWB can be an useful tool in reasoning about it.

References

[Aal19] Aalborg University. CAAL – GitHub repository. https://github.com/caal/caal,
2019.

[AILS07] L. Aceto, A. Ingólfsdóttir, K. Larsen, and J. Srba. Reactive Systems: Modelling,
Specification and Verification. Cambridge University Press, 2007. URL https://

books.google.it/books?id=Ju0HM-2RIwgC.

[CDOT19] T. Tesan. cwb2dot – GitHub repository. https://github.com/tobiatesan/

cwb2dot, 2019.

[CPS90] R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench. In J. Sifakis,
editor, Automatic Verification Methods for Finite State Systems, pages 24–37, Berlin,
Heidelberg, 1990. Springer Berlin Heidelberg.

[DOTX19] K. M. Fauske. dot2tex – GitHub repository. https://github.com/kjellmf/

dot2tex/blob/master/docs/index.rst, 2019.

[GRA19] Graphviz Authors. Graphviz – github repository. https://github.com/graphp/

graphviz, 2019.

[GV15] Gorrieri, Roberto and Versari, Cristian. Introduction to concurrency theory: transi-
tion systems and CCS. Springer Berlin Heidelberg, New York, NY, 2015.

[HJ91] H. Hansson and B. Jonsson. A calculus for communicating systems with time and
probabilities. pages 278 – 287, 01 1991. doi:10.1109/REAL.1990.128759.

[IEEE802.3] IEEE Std 802.3-2015 (Revision of IEEE Std 802.3-2012): IEEE Standard for Eth-
ernet. IEEE, 2016. URL https://books.google.it/books?id=e4R1AQAACAAJ.

[Par87] J. Parrow. Verifying a CSMA/CD-protocol with CCS. Technical report, LFCS Report
ECS-LFCS-87-18, University of Edinburgh, 1987.

[Pra95] K. Prasad. A calculus of broadcasting systems. Science of Computer Programming,
25(2):285 – 327, 1995. doi:https://doi.org/10.1016/0167-6423(95)00017-8. Selected
Papers of ESOP’94, the 5th European Symposium on Programming.

[Tan01] A. Tanenbaum. Modern Operating Systems. GOAL Series. Prentice Hall, 2001.

[Tan03] A. S. Tanenbaum. Computer Networks. Number p. 3 in Computer Networks. Prentice
Hall PTR, 2003.

[Wan91] Y. Wang. CCS + Time = An Interleaving Model for Real Time Systems. In ICALP,
1991.

[YL92] W. Yi and K. G. Larsen. Testing probabilistic and nondeterministic processes. In
R. LINN and M. UYAR, editors, Protocol Specification, Testing and Verification, XII,
IFIP Transactions C: Communication Systems, pages 47 – 61. Elsevier, Amsterdam,
1992. doi:https://doi.org/10.1016/B978-0-444-89874-6.50010-6.

25

https://github.com/caal/caal
https://books.google.it/books?id=Ju0HM-2RIwgC
https://books.google.it/books?id=Ju0HM-2RIwgC
https://github.com/tobiatesan/cwb2dot
https://github.com/tobiatesan/cwb2dot
https://github.com/kjellmf/dot2tex/blob/master/docs/index.rst
https://github.com/kjellmf/dot2tex/blob/master/docs/index.rst
https://github.com/graphp/graphviz
https://github.com/graphp/graphviz
http://dx.doi.org/10.1109/REAL.1990.128759
https://books.google.it/books?id=e4R1AQAACAAJ
http://dx.doi.org/https://doi.org/10.1016/0167-6423(95)00017-8
http://dx.doi.org/https://doi.org/10.1016/B978-0-444-89874-6.50010-6

Figure 15: Attempting to produce a state transition diagram with CWB and DaVinci results in
this.

A Software tools

The CWB is an useful, thorough and well-documented tool.
Its main drawback is that it fails to address the need to produce state transition diagrams for

agents.
Attempts to produce a diagram result in the output of Appendix A: all edges are invariably

routed to the top left of the diagram.
The interface with uDrawGraph (now DaVinci) doesn’t appear to work correctly; it might

have been broken in some ancient release and never been fixed.
Moreover, DaVinci only allows for exporting to raster formats, which don’t lend themselves to

successive manipulation at the semantic level and seamless integration into a LATEX(or other sort
of) document.

The latter consideration also goes for CAAL[Aal19].
Therefore, the program in [CDOT19] was written, that is able to parse a CWB script and

produce a .dot file for use with GraphViz [GRA19] in a programmatical fashion.
In turn, dot2tex [DOTX19] is able to turn dot-files into TikZ scripts.
All labeled transition diagrams in this document, such as figure 13, figure 14, were produced

in this manner.

26

B CWB Scripts

B.1 Specification

* Spec for MAC

* Models two stations linked by a

* full duplex medium

agent Tx1Spec = request1.’begin1.’end1.Tx1Spec;

agent Rx1Spec = begin2.end2.’indication2.Rx1Spec;

agent Tx2Spec = Tx1Spec[request2/request1,

begin2/begin1,

end2/end1];

agent Rx2Spec = Rx1Spec[begin1/begin2,

end1/end2,

indication1/indication2];

agent MACSpec = (Tx1Spec | Rx1Spec | Tx2Spec | Rx2Spec)

\ { p, v, begin1, end1, begin2, end2};

Listing 5: Our specification for the MAC service, amounting to a two-station, full duplex network

27

B.2 Implementation

** (Fixed) model of CSMA protocol **

* Receiver *

agent Rx1 = catchup1.(begin2_rx1.BeganRx1 + jam_rx1.silence_rx1.Rx1);

agent BeganRx1 = jam_rx1.silence_rx1.Rx1 + end_rx2.’indication2.Rx1;

* See Section 2.3 for the significance of catchup1/2

agent Rx2 = Rx1[catchup2/catchup1, begin1_rx2/begin2_rx1,

jam_rx2/jam_rx1, silence_rx2/silence_rx1,

end_rx1/end_rx2, indication1/indication2];

* Medium *

agent Medium = (begin1.(’begin1_rx2.(Crash1 + Clean1)) +

begin2.(’begin2_rx1.(Crash2 + Clean2)));

agent Clean1 = end1.’end_rx1.Medium;

agent Clean2 = end2.’end_rx2.Medium;

agent Crash1 = begin2.’jam_rx1.’jam_rx2.’jam_tx1.’jam_tx2.Noise;

agent Crash2 = begin1.’jam_rx1.’jam_rx2.’jam_tx2.’jam_tx1.Noise;

agent Noise = (abort1.abort2.’silence_rx1.’silence_rx2.Medium +

abort2.abort1.’silence_rx1.’silence_rx2.Medium);

* Transmitter *

agent Tx1 = request1.WaitForTrans1;

agent WaitForTrans1 = ’catchup2.’begin1.CollisionDetect1;

agent CollisionDetect1 = jam_tx1.’abort1.WaitForTrans1 + ’end1.Tx1;

agent Tx2 = Tx1[request2/request1, catchup1/catchup2,

begin2/begin1, end2/end1,

abort2/abort1, jam_tx2/jam_tx1];

agent CSMA = (Tx1 | Tx2 | Rx1 | Rx2 | Medium) \ {begin1, begin2, end1, end2,

abort1, abort2, silence_rx1, silence_rx2,

jam_rx1, jam_rx2, begin1_rx2, begin2_rx1,

jam_tx1, jam_tx2, end_rx1, end_rx2,

catchup1, catchup2};

Listing 6: Our CCS model of the CSMA/CD standard

28

B.3 Verification

*** Equivalence checking ***************************

input "full_duplex_spec.cwb";

input "good_impl.cwb";

* Strong bisimilarity *

echo "Strong bisimilarity (expected: false):";

strongeq(CSMA, MACSpec);

* Outputs: false (as expected)

dfstrong(CSMA, MACSpec);

* Output <request1><tau><tau>[request1]F

* Weak bisimilarity *

echo "Weak bisimilarity (expected: true):";

eq(CSMA, MACSpec);

* Weak trace equivalence *

echo "Weak trace equivalence (expected: true):";

mayeq(CSMA, MACSpec);

* Outputs: true:

Listing 7: Verification script to show equivalence between specification in listing 5 and implemen-
tation listing 6

29

*** Property checking *******************************

input "full_duplex_spec.cwb";

input "good_impl.cwb";

* Useful defns (Aceto 2007)

prop Pos(P) = min(X. P | <-> X);

prop Inv(P) = max(X.(P & [-]X));

prop Even(P) = min(X. P | (<->T & [-]X));

* Liveness *

prop Liveness = Inv(T);

echo "Liveness of protocol (expected: true)";

checkprop(CSMA, Liveness);

* Outputs: true

echo "Liveness of spec (expected: true)";

checkprop(MACSpec, Liveness);

* Outputs: true

* Livelock *

prop Livelock = max(X. <tau>X);

echo "Livelock in protocol (expected: true)";

checkprop(CSMA, Pos(Livelock));

* Outputs: true

echo "Livelock in spec (expected: false)";

checkprop(MACSpec, Pos(Livelock));

* Outputs: false

* (Lack of) Starvation *

* We make sure that when a request is sent it is evenutally always

* possible to have an indication on the receiving end, possibly after

* some exclusively internal actions.

prop Starvation = Inv([[request1]]<<’indication1>>T);

echo "(Lack of) starvation in spec (expected: true)";

checkprop(MACSpec, Starvation);

* Outputs: true

echo "(Lack of) starvation in impl (expected: true)";

checkprop(CSMA, Starvation);

* Outputs: true

Listing 8: Property checking for the implementation in listing 6
30

input "defns.cwb";

input "naive_impl.cwb";

input "full_duplex_spec.cwb";

* We also note that our first (broken) attempt at an implementation is

* not starvation-free:

prop Starvation = Inv([[request1]]<<’indication1>>T);

input "naive_impl.cwb";

echo "(Lack of) starvation in naive impl (expected: false)";

checkprop(BrokenCSMA, Starvation);

* Outputs: false

* However, we can confirm that in our first (broken) attempt at an

* implementation it is at least possible to *eventually* receive an

* ’indication after some non exclusively internal actions that have

* the effect of freeing the medium (see relevant paragraph).

prop WeakerStarv = Inv([[request1]]<<->><<’indication1>>T);

echo "WeakerStarv in naive impl (expected: true)";

checkprop(BrokenCSMA, WeakerStarv);

* Outputs: true

Listing 9: Property checking for (broken!) implementation in listing 4

31

B.3.1 Properties of alternate agents from section 2

* Simulation script to make the naive "half duplex"

* spec fail

input "naive_half_duplex_spec.cwb";

sim(HalfDuplexSpec);

1; * request1

1; * tau

1; * tau

1; * tau

1; * tau

1; * request1

1; * tau

1; * request2

* Results in:

*

* (’begin1.’end1.’v.Tx1Spec

* | Rx1Spec

* | (’p.’begin1.’end1.’v.Tx1Spec)[begin2/begin1,end2/end1,request2/request1]

* | (’recv2.Rx1Spec)[begin2/begin1,begin1/begin2,end2/end1,end1/end2,indication1/indication2]

* | v.Sem

*)

* \{begin1,begin2,end1,end2,p,v}

Listing 10: Simulation script to show the weakness of listing 2

32

**

*** Equivalence checking **

**

input "full_duplex_spec.cwb";

input "naive_impl.cwb";

* Weak trace equivalence *

echo "Trace equivalence (expected: true):";

mayeq(CSMA, MACSpec);

* Outputs: true:

* Strong bisimilarity *

echo "Strong bisimilarity (expected: false):";

strongeq(CSMA, MACSpec);

* Outputs: false (as expected)

dfstrong(CSMA, MACSpec);

* Outputs: <request1><tau><tau>[request1]F

* Weak bisimilarity *

echo "Weak bisimilarity:";

eq(CSMA, MACSpec);

* Outputs: false

diveq(CSMA, MACSpec);

* Outputs: false

dfweak(CSMA, MACSpec);

* Outputs: [[request1]][[request1]]<<request2>>[[request2]]F

Listing 11: Checks for listing 4

33

* Simulation script to make the naive

* implementation fail

input "naive_impl.cwb";

sim(CSMA);

1; * request1

1; * tau

1; * tau

1; * tau

2; * request1

2; * request2

1; * tau

1; * tau

* Results in:

*

* (CollisionDetect1

* | WaitForTrans1[abort2/abort1,begin2/begin1,

* end2/end1,jam_tx2/jam_tx1,

* request2/request1]

* | Rx1

* | Rec1[begin1_rx2/begin2_rx1,end_rx1/end_rx2,

* indication1/indication2,jam_rx2/jam_rx1,

* silence_rx2/silence_rx1]

* | ’begin1_rx2.(Crash1 + Clean1)

*)\{abort1,abort2,begin1,begin1_rx2,

* begin2,begin2_rx1,end1,

* end2,end_rx1,end_rx2,

* jam_rx1,jam_rx2,

* jam_tx1,jam_tx2,

* silence_rx1,silence_rx2}

*

* This process only affords an ’indication1 action

*

Listing 12: Simulation script to show the flaw of listing 4

34

B.3.2 Comparison with [Par87]

* Specification from Parrow 1987, modulo labels *

agent B12 = request1.B12’;

agent B12’ = request1.B12’’ + ’indication1.B12;

agent B12’’ = ’indication1.B12’;

agent B21 = B12[request2/request1, indication2/indication1];

agent SE = ’p.’v.SE;

agent SSSS = (B12 | SE | B21) \ {p,v};

input "full_duplex_spec.cwb";

echo "Weak bisimilarity between ours and Parrow’s spec (expected: true):";

eq(SSSS, MACSpec);

* Outputs: true (as expected)

Listing 13: Script to show bisimilarity between listing 5 and [Par87]

35

	Introduction
	Overview of 802.3 and CSMA/CD
	Service specification for MAC
	Protocol specification for CSMA/CD

	CSMA/CD and the (limitations of) CCS

	Modeling
	Service Specification
	Alternate perspectives

	Protocol
	Transmitter
	Receiver
	The medium

	A question of time

	Verification
	Equivalence checking
	Property checking

	Related works
	Conclusions
	Software tools
	CWB Scripts
	Specification
	Implementation
	Verification
	Properties of alternate agents from section 2
	Comparison with parrow1987

