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Abstract

In this document we discuss the MapReduce paradigm and its relationship with
Big Data.

In Section 1 we give a general idea of what Big Data is and discuss its challenges
and potential; in particular, in subsection 1.2 we give reasons why IoT should be
considered closely related to Big Data.

In Section 2 we introduce the MapReduce programming paradigm and discuss
its applicability, advantages and limitations; particularly, in 2.3.1 we highlight its
relationship with parallel relational databases.

Finally, in Section 3, we briefly discuss the Hadoop implementation of MapRe-
duce and give an example of a MapReduce program.
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1 Big Data

Ronald Fisher is famously quoted as stating, in his Presidential Address to the First
Indian Statistical Congress, that “to consult the statistician after an experiment is finished
is often merely to ask him to conduct a post mortem examination”, as he can at best
“say what the experiment died of”.

Yet the premise of big data is that valuable information can be extracted from data
which is not the result of a carefully designed experiment – and it’s the “bigness” of the
data that makes this approach at once possible, necessary and challenging.

Big Data is a naturally emerging byproduct of digital interaction and not the result
of a purposeful experiment – web server logs, clinical databases and in general large corpi
(or corpuses) of text can be examples of big data.

As such, another key characteristic of big data is its being only partially structured.
It can also be characterized [LJ12] as noisy, dynamic, heterogeneous, interrelated,

untrustworthy – and, of course, big in terms of sheer size.

1.1 The challenges of Big Data: Volume, Variety and Velocity

Famously, [GP11] summarizes the challenges of big data as “volume, variety and velocity”.
It’s indeed its size, or volume, that makes it valuable, potentially more than a true

statistical sample of small size: as [LJ12] put it, “general statistics obtained from frequent
patterns and correlation analysis usually overpower individual fluctuations and often
disclose more reliable hidden patterns and knowledge”.

Yet, its volume is a challenge – more precisely, its increasing volume in the face of
non-increasing compute resources at the single core level [LJ12].

It’s worth noting that the “end of Moore’s law” is happening at the same time as the
shift towards cloud storage and the third, simultaneus shift towards flash storage.

This requires that algorithms and computing models used to process big data be able
to exploit parallelism and are fit to be deployed in an heterogeneous environment char-
acterized by multi-tenancy and where elastic scalability is a requirement – this privileges
high level, declarative approaches that lend themselves well to automatic balancing and
optimization.

The variety of big data – i.e. heterogeneity of formats and potential incompleteness
of records – makes designing appropriate algorithms harder than in the presence of well-
structured, regular data.

Finally, its velocity requires a high acquisition rate and appropriate indexing tech-
niques, so that the data can be queried in real time even when it is continuosly growing.

Filtering, indexing and pre-processing at the acquisition stage can help dealing with
incompleteness and velocity, but engineers must find ways to do so while guaranteeing
lack of information loss; the danger is real as, after all, the notion of aggregate data is
fundamentally at odds with the one, given above, of big data.

1.2 Big Data and the Internet of Things

The nature of big data and IoT makes them ideal partners in a symbiotic relationship –
one that is already flourishing.
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IoT applications generate precisely the kind of digital data we have described in the
preceding section, but on an unprecedented scale, as devices are ubiquitous and applica-
tions are potentially endless: data is no longer just a byproduct of “online” interaction
and is instead continuously generated as things happen in the physical world : we could
go as far as saying that IoT generates the quintessential form of big data.

To give an idea of the relevance of the phenomenon, 12 million RFID tags (used to
capture data and track movement of objects in the physical world) were sold in 2011 [Dul]
and Gartner estimates more than 8 billion IoT devices will be in use in 2017 [vdM17].

A consequence of this is an unprecedented potential to query data and uncover rela-
tionships not only in the digital domain, but among “real life” phenomena as well.
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Figure 1: Basic flow of a MapReduce computation

2 MapReduce

MapReduce is a programming model that, for reasons that will soon be apparent, is
extremely popular to process big data: its most popular implementations are by far
Apache Hadoop, Disco and Spark, along – in terms of services powered and, likely, sheer
number of nodes deployed – with the one internally used by Google.

MapReduce did in fact come to prominence in the late 2000s in the wake of the work of
Dean and Ghemaway at Google [DG08]; the authors’ purpose was to devise a mechanism
to easily process and generate large data sets on commodity hardware for the company’s
internal needs; the main contribution of MapReduce was a simple interface in a functional
programming style – inspired, in fact, by map and reduce primitives in LISP – that could
be automatically parallelized.

The rationale that motivated the authors was the observation that the company’s
workloads were conceptually simple computations (often no more complex than an ele-
mentary SQL query) made cumbersome by the need to handle large input data, parallelize
and distribute the computation.

With MapReduce, the run-time system takes care of partitioning input data, schedul-
ing execution, handling failures and managing communication.

The MapReduce paradigm fits naturally well with distributed file systems, and is in
fact often cited in conjunction with the work on the Google File System by the same
authors [GGL03].

2.1 How MapReduce works

A MapReduce program is defined in terms of two functions map : 〈k, v〉 → 〈k′, v′〉 and
reduce : 〈k′, v′〉 → 〈k′′, v′′〉.

The MapReduce process is initated by a master node.
The input data, stored on a distributed filesystem, is first partitioned into m m-splits

for processing by m map instances.
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The master node maps each m-split to m map instances map(1...m) that yield m sets
of 〈k′, v′〉 pairs, each with arbitrary cardinality; the output is buffered to a local disk
upon completion.

Each set is then mapped on n reduce instances reduce(1...n) , which the master node
initiates on worker nodes.

The reduce worker first reads all the intermediate data, it sorts the data and iteratively
applies reduce : 〈k′, v′〉 → 〈k′′, v′′〉 over every sorted 〈k′, v′〉 pair.

Finally, the output from the various reduce jobs is written to a single output file.
This computation flow is summed up in Figure 1.
Its worth noting that the algorithm described above does not require defining a schema

for the input data, which can partitioned, for example, on a per-line basis, and is thus
well-suited to the kind of semi-structured big data that we’ve discussed in the preceding
section.

2.2 Benefits of MapReduce

MapReduce operates well in environments where bandwidth is a relatively scarce resource,
as scheduling can be optimized for locality, i.e. the master node can try to initiate each
worker instance on a node containing – or in the proximitiy of a node containing – a
replica of the input data.

MapReduce offers a high level of resiliency to large-scale worker failures: upon failure
of a node that causes loss of the intermediate map output or failure to carry a reduce

job to completion, additional copies of the computations can be rescheduled on surviving
nodes.

The loss of a master node is handled in the original paper through the “ostrich algo-
rithm” – i.e. the possibility is ignored due to its improbability [DG08].

However, an implementation of MapReduce can easily include some form of backup
or redundancy for the master node.

A distributed, non-faulting execution of a MapReduce program yields the same output
as a local, sequential execution of the composition of the map and reduce function, which
makes it easy to reason about Mapreduce programs, debug and test them locally.

2.3 Limitations of MapReduce

In the previous section we have detailed how declarative, high level approaches are to be
favoured for deployment in the cloud; moreover, high level primitives are also essential
for composing and building complex anaytical pipelines [LJ12].

MapReduce is still a relatively low level idiom that requires developers to write custom
programs which – while devoid of the complexity of handling distribution and file access
manually – are hard to maintain and reuse [TSJ+09].

In this respect high level languages like Hive or Pig Latin, used by Apache Pig, appear
very promising: Pig Latin is a higher level procedural language, whereas Hive provides
a SQL-like query language called HiveQL which supports many familiar forms of SQL
statements, including SELECT, PROJECT, JOIN, AGGREGATE, UNION as well as sub-queries
in the FROM clause.
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RDBMS MapReduce

Volume Gigabytes Petabytes
Mode of operation Interactive and batch Batch

Mode of access R/W-many WORM
Transaction ACID No transaction support

Table 1: Comparison of RDBMSs and MapReduce, from [Whi12]

Another potentially significant drawback is that deploying MapReduce on commodity
nodes used for processing and storage has potentially serious consequences on the energy
efficiency of MapReduce clusters.

Leverich and Kozyrakis [LK10] have highlighted how the filesystem component of
MapReduce frameworks effectively precludes scale-down of clusters, as even idle nodes
remain powered on all the time to ensure data availablility.

The authors have experimented modifications to the Hadoop scheduler and data lay-
out that enabled them to achieve up to 50% energy savings in trade for performance,
and suggested that an energy-efficient Hadoop cluster should contain a dynamic power
controller which is able to intelligently optimize usage in order to assign and guarantee
different service level agreements for different jobs.

2.3.1 MapReduce and parallel DBMSs

MapReduce finds itself competing in areas that, until the early 2000s, were the domain
of traditional (i.e. SQL) parallel DBMSs.

However, MapReduce and SQL-based products are best considered complementary
technologies suited for complementary classes of problems [SAD+10].

MapReduce is a fundamentally batch paradigm [Whi12], best suited to implement an
extract-transform-load system for enormous quantities of unstructured or semistructured
data rather than for fast querying of data.

Besides the edge that MapReduce has in handling semistructured data – which could
be, for example, represented in traditional database systems with a wide table with many
nullable attributes to accommodate multiple record types [SAD+10] – not having to define
a schema makes MapReduced better suited for one-off complex data transformations.

PDBMSs also exhibit significantly higher TOC and setup costs that make MapReduce-
based systems attractive [SAD+10] for users with limited budgets.

Stonebraker [SAD+10] however notes that PDBMSs are still the appropriate choice
for query-intensive, interactive applications.
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Figure 2: The YARN stack of technologies (from [Whi12])

3 Hadoop

Hadoop is an extremely popular implementation of MapReduce that was originally imple-
mented as a component of Apache Nutch, directly inspired by the GFS and MapReduce
papers soon after they were published by Google engineers; Hadoop was spun off Apache
Nutch and became its own project in 2006 [Whi12].

Since its beginnings, Hadoop has incorporated a MapReduce implementation and a
distributed filesystem called HDFS [Whi12];

Moreover, since its second version, Hadoop incorporates Apache YARN for cluster
management; YARN provides low-level APIs for requesting and working with cluster
resources.

In turn, these APIs are leveraged by higher level distributed computing frameworks
– such as MapReduce, Spark... – that run as YARN applications on top of the YARN
cluster [Whi12]; the MapReduce implementation running on YARN in Hadoop ≥ 2.x
mantains API compatibility with so-called Mapreduce 1 API.

Three layers – Application Layer, Cluster Compute Layer and Storage Layer – are
thus determined, visible in Figure 2.

The participants in a YARN compute cluster are the Resource Manager that exposes
the computing resources to clients and coordinates several Node Managers, one per cluster
node; several containerized application processes are run under each Node Manager, as
illustrated in Figure 3.

Application processes are not necessarily symmetrical nor independent from each other
– for example, in MapReduce jobs, there is a so-called “application master” process, which
has coordination responsibilities towards other processes in the same job.

3.1 An example MapReduce program: education in Italy

We will now give an example of a MapReduce program using Hadoop.
Let us note that the data we will manipulate are indeed distant from the definition

of “big data” and the operations we will carry out on them are equivalent to a one-line
SQL query – however, they shall make for a relatively straightfoward example.

More complex programs that process actual big data will not deviate from the paradigm
that the example serves to illustrate – since, naturally, they will be subject to the same
flow of control imposed by the framework – but may include more complex logic in their
reduce and map functions.
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Figure 3: Architecture of a multi-node Hadoop cluster

We have retrieved from the i.Stat datawarehouse [IST], made available by ISTAT,
a 112.7MB dataset containing the census of individuals per type and level of degree
obtained1, per gender, per age group in each geographical region.

We will extract the total, nation-wide number of individuals for each type of degree
and rank the various types of degrees by numerosity, with the aim of gaining some insight
on what are the most represented specializations2.

The dataset is in CSV format, uncommonly using a pipe (|) as separator. A snippet
of the dataset is visible in Figure 4.

We will use, in fact, two jobs for a total of 2 mappers and 2 reducers: one job (Listings
2 and 3) counts the number of individuals per degree, using the degree as output key3,
while the second one (Listings 4 and 5) ranks degrees by popularity.

The jobs are chained together rather crudely in the main method (Listing 1) – the
first job writes its output to a temporary output directory which is then used as input
for the second one.

A more sophisticated way of daisy-chaining jobs is offered by JobControl; alternately,
Apache Oozie can be used, which runs as a service in the cluster [Whi12].

In Figure 5 we can see the resulting output, trimmed for length.
From it we can take away the reassuring notion that telecommunications engineers

outnumber specialists in subtropical agriculture.

1Only the highest degree obtained by each individual is counted in the census
2In practice, we will find that the results are inconclusive due to irregular input data – particularly, in

some regions large numbers of individuals are simply reported to have a “Master’s Degree” or “Laurea”
with no mention of the field.

3Note that the degree is the 13th field of a record, whereas the number of recorded individuals holding
that degree for the given region/age/gender group is the 18th.
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1 pub l i c c l a s s RankDegrees {
2 pub l i c s t a t i c void main ( String [ ] args ) throws Exception {
3 i f ( args . length != 2) {
4 System . err . println ( ”Usage : RankDegrees <input path> <output ←↩

path>” ) ;
5 System . exit (−1) ;
6 }
7

8 Job job = new Job ( ) ;
9

10 job . setJarByClass ( RankDegrees . c l a s s ) ;
11 job . setJobName ( ”Compute t o t a l count f o r each degree ” ) ;
12

13 FileInputFormat . addInputPath (job , new Path ( args [ 0 ] ) ) ;
14 java . nio . file . Path tempnio = Files . createTempDirectory ( ” top ” ) ;
15 Path temp = new Path ( tempnio . toString ( ) + ”/ output ” ) ;
16 FileOutputFormat . setOutputPath (job , temp ) ;
17

18 job . setMapperClass ( CountMapper . c l a s s ) ;
19 job . setReducerClass ( CountReducer . c l a s s ) ;
20

21 job . setOutputKeyClass ( Text . c l a s s ) ;
22 job . setOutputValueClass ( IntWritable . c l a s s ) ;
23

24 Boolean status = job . waitForCompletion ( t rue ) ;
25

26 // This i s a ra the r crude way o f cha in ing jobs
27 i f ( status ) {
28 Job job2 = new Job ( ) ;
29

30 job2 . setJarByClass ( RankDegrees . c l a s s ) ;
31 job2 . setJobName ( ”Rank degree s by t o t a l count ” ) ;
32

33 FileInputFormat . addInputPath (job2 , temp ) ;
34 FileOutputFormat . setOutputPath (job2 , new Path ( args [ 1 ] ) ) ;
35

36 job2 . setMapperClass ( RankMapper . c l a s s ) ;
37 job2 . setReducerClass ( RankReducer . c l a s s ) ;
38

39 job2 . setMapOutputKeyClass ( IntWritable . c l a s s ) ;
40 job2 . setMapOutputValueClass ( Text . c l a s s ) ;
41

42 job2 . setOutputKeyClass ( Text . c l a s s ) ;
43 job2 . setOutputValueClass ( IntWritable . c l a s s ) ;
44 System . exit ( job2 . waitForCompletion ( t rue ) ? 0 : 1) ;
45 } e l s e {
46 System . exit (1 ) ;
47 }
48 }
49 }

Listing 1: RankDegrees class with main method
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1 pub l i c c l a s s CountMapper

2 extends
3 Mapper<LongWritable , Text , Text , IntWritable> {
4 @Override

5 pub l i c void map ( LongWritable key , Text value , Context context )
6 throws IOException , InterruptedException {
7

8 i f ( key . get ( ) > 0) {
9 String line = value . toString ( ) ;

10 String [ ] parts = line . split ( Pattern . quote ( ” | ” ) ) ;
11 i f ( parts . length >= 18) {
12 String degree = parts [ 1 3 ] . trim ( ) ;
13 i n t number = Integer . parseInt ( parts [ 1 8 ] . trim ( ) ) ;
14 i f ( ! degree . equals ( ”\” t o t a l \”” ) )
15 context . write (new Text ( degree ) , new IntWritable (←↩

number ) ) ;
16 }
17 }
18 }
19 }

Listing 2: CountMapper class

1 pub l i c c l a s s CountReducer

2 extends
3 Reducer<Text , IntWritable , Text , IntWritable> {
4 @Override

5 pub l i c void reduce ( Text key , Iterable<IntWritable> values ,
6 Context context )
7 throws IOException , InterruptedException {
8 i n t total = 0 ;
9 f o r ( IntWritable value : values ) {

10 total = total + value . get ( ) ;
11 }
12 context . write (key , new IntWritable ( total ) ) ;
13 }
14 }

Listing 3: CountReducer class
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1 pub l i c c l a s s RankMapper

2 extends
3 Mapper<LongWritable , Text , IntWritable , Text> {
4 @Override

5 pub l i c void map ( LongWritable key , Text value , Context context )
6 throws IOException , InterruptedException {
7 context . write (new IntWritable (1 ) , value ) ;
8 }
9 }

Listing 4: RankMapper class

1 pub l i c c l a s s RankReducer

2 extends
3 Reducer<IntWritable , Text , Text , IntWritable> {
4 @Override

5 pub l i c void reduce ( IntWritable key , Iterable<Text> values ,
6 Context context )
7 throws IOException , InterruptedException {
8

9 c l a s s Pair {
10 pub l i c String _s ;
11 pub l i c i n t _n ;
12 Pair ( String s , i n t n ) {
13 _s = s ;
14 _n = n ;
15 }
16 }
17

18 TreeMap<Integer , Pair> map = new TreeMap<Integer , Pair>() ;
19

20 f o r ( Text value : values ) {
21 String line = value . toString ( ) ;
22 String [ ] parts = line . split ( Pattern . quote ( ”\ t ” ) ) ;
23 i f ( parts . length >= 2) {
24 Integer number = Integer . parseInt ( parts [ 1 ] . trim ( ) ) ;
25 String stuff = parts [ 0 ] . trim ( ) ;
26 map . put ( number , new Pair ( stuff , number ) ) ;
27 }
28 }
29

30 f o r ( Pair pair : map . descendingMap ( ) . values ( ) ) {
31 context . write (new Text ( pair . _s ) , new IntWritable ( pair . _n ) ) ;
32 }
33 }
34 }

Listing 5: RankReducer class
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"diploma of lower secondary education" 201610085

"diploma of upper secondary education (4-5 years)" 167711824

"primary school certificate" 136087601

"diploma of technical institute" 83185853

"no formal education" 59288383

.

.

"telecommunications, electronics and computer engineering" 1490593

.

.

"academic degree of national academy of dramatic art [...]" 3825

"industrial relations" 3770

"tropical/subtropical agricultural sciences" 3666

Figure 5: Job output
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